

기후변화 대응 복합 스트레스 저항성 신품종 벼 '세복'

기술 개요

Overview

① **적용분야** 쌀품종, 고품질 쌀가공식품, 기능성 식품

(2) 기술요약

고품질인 호품을 모본으로 하고, IR64-DTY/Matatag1// IR64-PUP1의 3원 교배체 자식 계통을 부본으로 하여, 출수기가 모본보다 빠르고 인산 무시비 조건에서 모본보다 우수한 표현형(초형, 수량성, 항산화 물질)을 나타내는 계통 육종 방법 및 품종에 관한 것임.

③ 특허 권리 범위

- 대조품종인 호품 벼에 비하여 총 플라보노이드 및 총 폴리페놀 함량이 증가된 자포니카 벼(Oryza sativa subsp. japonica) 신품종 '세복'의 종자(기탁번호: KACC 98132P)
- '세복'의 육종 방법 및 상기 육종 방법을 통해 육성된 식물체

기술의 목적

기후변화 대응 고품질 비생물-생물 복합 스트레스 저항성 우수품종 육성을 목표로 함.

해결 방안

호품벼를 모본으로 하고,

IR64-DTY(내건성 품종)/Matatag1(퉁그로바이러스 저항성 품종)//IR64-PUP1 (인산결핍 저항성 품종)의 3원 교배체 자식 계통을 부본으로 교배하여 고품질의 호품벼에 비생물-생물 복합 스트레스 저항성 특성을 도입함.

기술의 특장점

진한 적갈색의 현미색, 간장 76.9cm의 조생종 메벼.

플라보노이드와 폴리페놀 함량이 호품벼(모본)보다 각각 4.55배 및 1.73배 높음.

출수기가 호품벼(모본) 보다 빠르고, 인산무시비 토양에서 수확량은 10a 당 363kg의 수량으로 호품벼(모본)보다 높은 특징이 있음.

1

세종대 기술이전센터 TEL. 02-3408-4097

기술적용 시 기업의 이점

지식재산권 확보를 통해 해당 품종을 독점적으로 생산하고 판매할 수 있으므로 시장에서 경쟁 우위를 가질 수 있고, 이를 이용하고자 하는 곳과 협업 및 파트너십을 통해 새로운 수익창출의 기회를 제공할 수 있음.

SWOT분석

Analysis

- 호품벼(모본) 대비 종자 내 총 플라보노이드 및 총 폴리페놀 함량이 증가, 인산 무시비 조건에서 호품벼(모본)에 비하여 종자 생산성이 증가됨.
- 2022년 10월 국립농업과학원(KACC)에 기탁(KACC98132P)함.

 유사환경 테스트만을 수행한 것으로, 특정 기후나 토양 및 병충해에 취약할 수 있음.

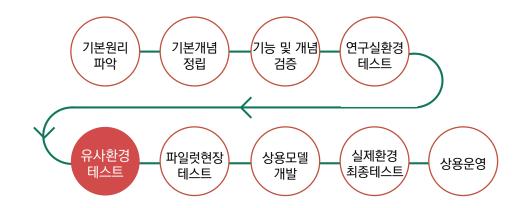
- 전 세계적으로 주요 식량 자원에 속하는 쌀.
- 소비자들의 건강 및 영양에 대한 관심 증가로 인해, 고영양, 고품질의 기능성 쌀 품종에 대한 수요가 증가.

- 식량자원 내 다른 곡물 또는 대체 식품 증가에 따른 쌀 소비의 축소 및 경쟁 심화.
- 정부의 농업 정책 또는 규제 변화에 따른 인해 쌀 품종 시장 변화.
- 기후 변화로 인한 극한 기후 조건, 새로운 질병 및 해충의 발생 등 쌀 생산에 부정적인 영향을 미치는 요소 존재.

대표도면

Drawing

년도	2019	2019-20	2019-20	2020	2020-21	2020-21	2021	2021-22	2022
세대	F ₁	BC ₁ F ₁	BC ₂ F ₁	BC ₂ F ₂	BC ₂ F ₃	BC ₂ F ₄	BC ₂ F ₅	BC ₂ F ₆	BC ₂ F ₇
호품 /4188445-17	HP11541	1 1 →	45	20 -	3 - 5	→ 3 -	→ Bulk-	+ Bulk-	→ Bulk
육성계통 (개체)	30	20	200	20	5	5	Bulk	Bulk	Bulk
선발	개체선발			계통선발			생산력검정		



〈대조품종인 호품벼와 '세복'의 정조(알벼)와 현미 사진〉 세종대 기술이전센터 TEL. 02-3408-4097

기술의 완성도

Technology Readiness level

● : 현재 단계입니다.

특허현황

Patent status

발명의 명칭	출원번호	등록번호	출원국가
환경 스트레스에 대한 저항성 및 항산화 물질 함량이 증가된 자포니카 벼 신품종 '세복' 및 이의 육종 방법	10-2022- 0172952 (2022.12.12.)	10-2618294 (2023.12.21.)	한국

기술키워드

Keyword

한글키워드	영문키워드
신품종 개발, 자포니카 벼, 환경 스트레스 저항성, 인산 흡수능, 항산화 물질,	New Variety Development, Japonica rice, Environmental stress resistance, Phosphorus absorption capacity, Antioxidants

발명자

Inventor Info.

교수명 진중현

소속 세종대학교 스마트생명산업융합학과

연구분야 기후 변화 대응 벼 품종 개발과 활용

E-mail jhchin@sejong.ac.kr

웹사이트 http://sejongtlo.com