
# 터널 결정구조의 칼륨 이차전지용 양극 활물질

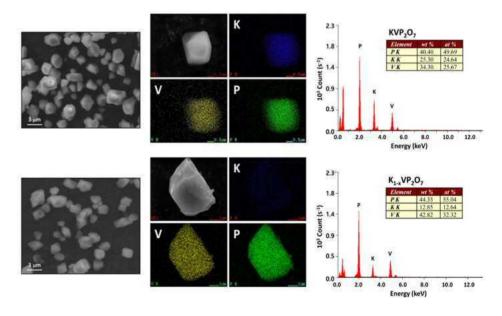
본 기술은 칼륨 이차전지용 양극 활물질에 관한 것으로서,

충방전시 상전이를 일으키는 것으로,  $(K_{1-a}M1_a)(V_{1-b}M2_b)P_cO_d$  양극 활물질에 관한 것임





# 기술소개

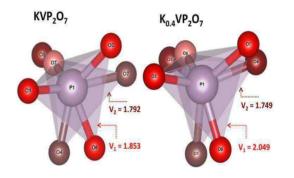

### **() 1** 발명의 명칭

#### 칼륨 이차 전지용 양극 활물질 및 칼륨 이차 전지

### 주래기술 대비 본 기술의 개요 및 특징

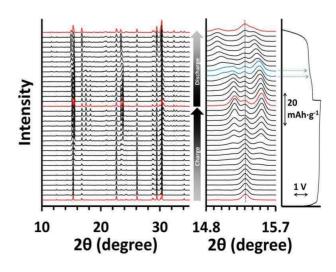
- 종래 기술의 문제점
- 현재 이차전지 시장은 그린 에너지 산업의 핵심 성장 동력으로, 초고속 성장 추세 에 있으며, 특히, 리튬 이차전지가 상용화되고 있음
- 리튬 이차전지만으로는 수요에 부응할 수 없어, 리튬을 대체할 수 있는 포스트 이 차전지의 개발이 필요하며, 차세대 이차전지로 나트륨 이차전지에 대한 연구가 활 발히 진행되고 있음
- 이에 대하여, 나트륨보다 풍부한 자원량을 가지며 낮은 표준 환원 전위를 갖는 칼륨 금속을 포함하는 칼륨 이차전지에 대한 개발이 진행됨
- 기술의 간략한 설명
- 본 발명은 구조적 안정성이 우수한 **터널 형태의 결정구조를 갖는 칼륨 이차전지용** 양국 활물질을 제공함
- 상기 양극 활물질은 충방전시 가역적인 상전이를 일으킴

#### ■ 대표도면




[본 발명에 따른 양극 활물질 $(KV_2O_7 \mu)$  이를 산화시킨  $K_{1-x}V_2O_7 \mu$ 에 대한 FESEM 이미지 및 EDX 분석 결과]

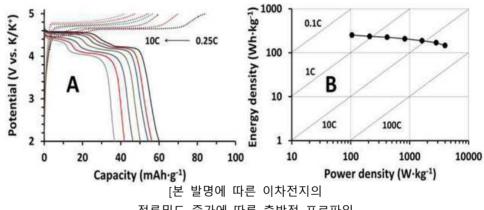
#### ■ 기술의 특징 및 우수성


#### 칼륨 이차전지용 양극 활물질 및 그 제조방법

- 본 발명의 칼륨 이차전지용 양극 활물질은, K, 전이금속, P 및 O를 포함하는 결정질 물질로, 충방전 과정에서 단사정계 결정구조(충전상태)와 삼사정계 결정구조(방전상태)의 가역적인 상전이가 동적으로 이루어지는 것
- 구체적으로, 상기 결정질 물질은 충전 상태에서의 조성이 하기와 같음:
  [화학식 1] (K<sub>1-a</sub>M1<sub>a</sub>)(V<sub>1-b</sub>M2<sub>b</sub>)P<sub>c</sub>O<sub>d</sub>
  화학식 1에서, 0≤a≤0.1, 0≤b≤0.7, 1.≤c≤2.2, 6.8≤d≤7.2이고,
  M1은 K를 제외한 알칼리금속 원소 중 1종 이상이고,
  M2는 Ti, Fe, Cr, Mo, Mn, Co, Ni, Al, La, Gd, Lu 중에서 선택되는 하나의 원소임 방전 상태에서의 조성은 하기와 같음:
  [화학식 2] (K<sub>1-a</sub>M1<sub>a</sub>)(V<sub>1-b-e</sub>M2<sub>b</sub>)P<sub>c</sub>O<sub>d</sub>
  화학식 2에서, a,b,c 및 d는 화학식 1과 같으며, 0.55≤e≤0.65임
- 구체적으로, 상기 경절질 물질은 충전 상태에서는  $KVP_2O_7$ 이고, 방전상태에서는  $K_{1-x}VP_2O_7(0.55 \le x \le 0.65)$ 인 활물질임

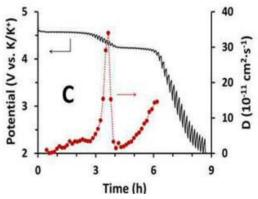


[본 발명의 양극 활물질에 대한 충전 및 방전시의 형태의 차이를 보여주는 이미지]


• 상기 결정질 물질은, 충전 상태에서의 공간그룹은 P2<sub>1</sub>/c이고, 방전 상태에서의 공 간그룹은 P1 으로 상전이가 발생하였으며, 이는 가역적으로 일어남을 확인할 수 있음

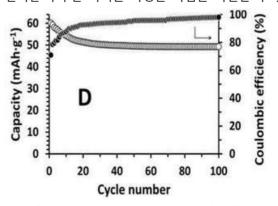


[본 발명에 따른 양극 활물질의 Synchrotron in situ XRD 분석]


#### 기술의 우수성

- 1회 사이클에서, 전류밀도가 0.25C에서 10C-rate로 증가시, 최대 방전용량이 60mAg<sup>-1</sup>에서 37mAg<sup>-1</sup>에 달함을 알 수 있음
- 그러나, 105W/kg의 출력 밀도에서 253Wh/kg의 에너지 밀도를 나타내며, 이는 188Wh/kg으로 점진적으로 감소하여, 충방전 속도가 증가하여도 에너지 밀도가 우수하게 나타나는 것을 알 수 있음




전류밀도 증가에 따른 충방전 프로파일 및 출력밀도에 따른 에너지 밀도를 나타낸 그래프]

• 본 발명에 따른 활물질 내 칼륨 이온의 빠른 확산성이 전지의 고에너지밀도를 갖 게하는 요인임을 확인할 수 있음



[GITT를 사용하여 방전깊이가 있는 확산계수(Ds)의 진화의 조사를 나타낸 그래프]

• 본 발명에 따른 전지는 우수한 사이클 특성을 가짐을 확인할 수 있음



[본 발명에 따른 전지의 사이클 특성을 나타낸 그래프]

#### ■ 기술의 우수성

- ① 본 발명의 칼륨 이차전지용 양극 활물질은 및 구조적 안정성을 가짐
- ② 상기 활물질은 칼륨 이온의 확산성이 우수한 것으로 나타남

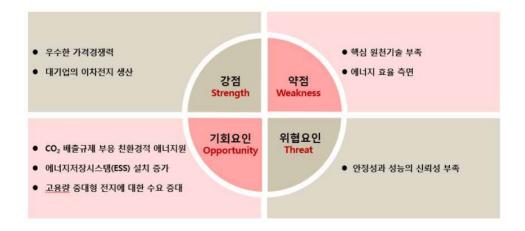
| 종래기술<br>문제점        | <ul> <li>이차전지의 시장은 급속도로 성장하고 있으나, 현재 상용화된 리튬이차전지만으로는 수요를 감당하기 어려움</li> <li>차세대 이차전지에 대한 연구가 필요한 실정</li> <li>이에 따라, 나트륨보다 풍부한 자원량을 가지며 낮은 표준 환원 전위를 갖는 칼륨 금속을 포함하는 칼륨 이차전지에 대한 개발이 진행됨</li> </ul>                                                                                                            |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 해결방안               | • <b>터널형태의 결정구조</b> 를 가지며 구조적 안정성이 우수한 칼륨 이차<br>전지용 양극 활물질을 제공함                                                                                                                                                                                                                                             |
| 기술의<br>특징 및<br>우수성 | <ul> <li>칼륨 이차전지용 양극 활물질은 (K<sub>1-a</sub>M1<sub>a</sub>)(V<sub>1-b</sub>M2<sub>b</sub>)P<sub>c</sub>O<sub>d</sub> (0≤a≤0.1, 0≤b≤0.7, 1.≤c≤2.2, 6.8≤d≤7.2이고, M1은 K를 제외한 알칼리금속 원소 중 1종 이상이고, M2는 Ti, Fe, Cr, Mo, Mn, Co, Ni, Al, La, Gd, Lu 중에서 선택되는 하나의 원소임)의 조성을 가짐</li> <li>충방전시 가역적인 상전이를 일으킴</li> </ul> |

#### ■ 기술의 효과

- 리튬 이차전지에 대한 차세대 이차전지를 제공할 수 있음
- 사이클 특성이 우수하며 고율 특성 및 고에너지 밀도 특성을 갖는 칼륨 이차전지를 제공할 수 있음

### ■ 기술의 완성도(TRL)

| 기초 연구 단계   |            | 실험 단계         |              | 시작품 단계      |              | 제품화 단계     |                | 사업화  |
|------------|------------|---------------|--------------|-------------|--------------|------------|----------------|------|
| 기본원리<br>파악 | 기본개념<br>정립 | 기능 및<br>개념 검증 | 연구실환경<br>테스트 | 유사환경<br>테스트 | 파일럿현장<br>테스트 | 상용모델<br>개발 | 실제 환경<br>최종테스트 | 상용운영 |
|            |            |               | •            |             |              |            |                |      |


#### ■ 기술 키워드

| 한글키워드 | 칼륨 이차전지, 전극 활물질, 터널 구조, 상전이                                                          |
|-------|--------------------------------------------------------------------------------------|
| 영문키워드 | Potassium based secondary battery, active material, tunnel type,<br>phase transition |

# 03 기술적용분야 및 경쟁력

- 기술의 적용분야
- 칼륨 이차전지
- 칼륨 이차전지용 전극 활물질
- 기술경쟁력
- 차세대 리튬 이차전지로서, 칼륨 이차전지를 제공함에 따라 칼륨 이차전지의 상용 화에 기여할 수 있음
- 포스트 리튬 이차전지의 대표주자인 나트륨 이차전지에 포함된 나트륨 금속 대비 칼륨 금속은 풍부한 자원량을 보임
- 기술실시에 따른 기업에서의 이점
- 차세대 리튬 이차전지에 대한 대안으로 미래의 이차전지 시장의 후보군임
- ESS용과 같은 대용량 이차전지에 이용될 수 있음

[국내 칼륨 이차전지 분야의 SWOT 분석]



#### 특허현황

| 구분 | 발명의 명칭                         | 출원번호<br>(출원일)                   | 등록번호<br>(등록일) | 출원<br>국가 |
|----|--------------------------------|---------------------------------|---------------|----------|
| 1  | 칼륨 이차 전지용 양극 활물질 및<br>칼륨 이차 전지 | 10-2017-0182017<br>(2017-12-28) | -             | 한국       |



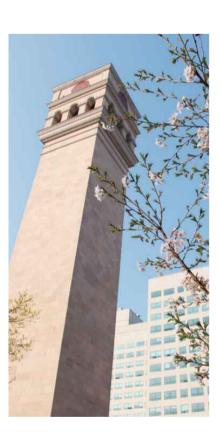
교수명 손 기 선 (디스커버리 실험실)

소속 세종대학교 공과대학 나노신소재공학과

**E-mail** kssohn@sejong.ac.kr

연구분야 LED 형광체,

이차전지의 전극 소재


#### ■ 대표 연구실적

#### **Journals**

- Identification of a narrow band red light-emitting phosphor using computational screening of ICSD: Its synthesis and optical characterization, Journal Of Alloys And Compounds 774 (2019)
- KCrS2 Cathode with Considerable Cyclability and High Rate Performance: The First K+ Stoichiometric Layered Compound for Potassium-Ion Batteries , Small 14 (2018)
- Determination of possible configurations for Li0.5CoO2 delithiated Li-ion battery cathodes via DFT calculations coupled with a multi-objective non-dominated sorting genetic algorithm (NSGA-III) , Physical Chemistry Chemical Physics 20 (2018)
- Rb3SiF7:Mn4+ and Rb2CsSiF7:Mn4+ Red-Emitting Phosphors with a Faster Decay Rate, Chemistry Of Materials 30 (2018) Polyviologen as a high energy density cathode in magnesium-ion batteries, Electrochimica Acta 283 (2018)
- Deep-Learning Technique To Convert a Crude Piezoresistive Carbon Nanotube-Ecoflex Composite Sheet into a Smart, Portable, Disposable, and Extremely Flexible Keypad, Acs Applied Materials & Interfaces 10 (2018)
- KVP2O7 as a Robust High-Energy Cathode for Potassium-Ion Batteries: Pinpointed by a Full Screening of the Inorganic Registry under Specific Search Conditions, Advanced Energy Materials 8 (2018)
- Reversible K+-Insertion/Deinsertion and Concomitant Na+-Redistribution in P ' 3-Na0.52CrO2 for High-Performance Potassium-Ion Battery Cathodes, Chemistry Of Materials 30 (2018)
- Reversible K+-Insertion/Deinsertion and Concomitant Na+-Redistribution in P ' 3-Na0.52CrO2 for High-Performance Potassium-Ion Battery Cathodes, Chemistry Of Materials 30 (2018)
- Simultaneous Suppression of Metal Corrosion and ElectrolyteDecomposition by Graphene Oxide Protective Coating inMagnesium-Ion Batteries: Toward a 4-V-Wide Potential Window, Acs Applied Materials & Interfaces 9 (2017)
- An extremely simple macroscale electronic skin realized by deep machine learning, Scientific Reports 7 (2017)
- Nickel hydroxide nanoplatelets via dendrimer-assisted growth on graphene for high-performance energy-storage applications, Electrochimica Acta 248 (2017)
- Metaheuristics-Assisted Combinatorial Screening of Eu2+-Doped Ca-Sr-Ba-Li-Mg-Al-Si-Ge-N Compositional Space in Search of a Narrow-Band Green Emitting Phosphor and Density Functional Theory Calculations, Inorganic Chemistry 56 (2017) 등

### 학술발표

- Data mining for the igorganic crystal strucure database (ICSD) to search for a red light-emitting phosphor, Phosphor Safari 2018(한국정보디스플레이학회 등), 2018-11
- Search for Cuboid Local Structures in the Inorganic Crystal Structure Database (ICSD) and Ensuing DFT Computation to identify a Red Light-Emitting Phospor, EL2018(EL), 2018-09
- Discovery of Phosphors for LightEmitting Diode Applications UsingMetaheuristics Computation, Phosphor Global Summit 2017(Phosphor Global Summit), 2017-03 등



