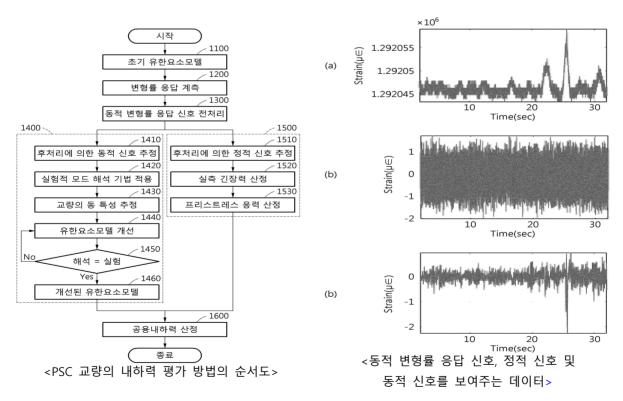
PSC 교량의 내하력 평가

대표발명자 : 이종재 교수



PSC 교량의 내하력 평가

□ 기술개요

- 본 기술은 매립형 강연선의 긴장력과 상시진동기반 유한요소모델 개선 기법을 이용한 PSC(Prestressed Concrete) 교량의 내하력 평가 방법에 관한 기술임
- 내하력 평가의 대상이 되는 PSC 교량에 대한 초기 유한요소모델을 도출하는 단계; PSC 교량의 강연선에 매립되어 있는 선형센서를 사용하여 교량의 동 적 변형률 응답을 계측하는 단계; 동적 변형률 응답에서 동적신호를 분류하 는 단계; 동적 변형률 응답에서 정적신호를 분류하는 단계; 및 동적신호 및 정적신호를 이용하여 PSC 교량의 공용 내하력을 산정하는 단계를 포함함
- 이는 선형센서 매립형 강연선의 실측 긴장력 값과 교량의 동특성을 기반으로 하여 개선된 유한요소모델을 이용하여 신뢰도 높은 PSC 교량의 내하력을 평가할 수 있음

□ 대표도면

□ 기술의 특징 및 우수성

○ 본 기술은 강연선으로부터 계측된 상시진동기반 변형률 응답을 활용하여 PSC 교량의 유한요소모델을 개선할 수 있으며, 강연선으로부터 계측된 데이터를 활용하여 개선된 유한요소모델을 사용하는 프리스트레스 콘크리트 교량의 내하력 평가 방법을 제공할 수 있음

[표] 기술의 특징 및 우수성

현재 수행되고 있는 재하실험은 교량에 설치된 센서를 통해 교량의 변형률과 **처짐과 같은 단순한 응답들**을 획득하여 실시되는데. 이러한 응답들을 이용하여 교량의 모든 거동을 표현하기에는 한계가 있음 종래기술 • 강연선이 매립된 PSC 교량의 경우에는 내하력을 산정하기 위해서 **강연선의 긴** 문제점 장력의 예측값을 사용하기 때문에 신뢰도가 높은 결과를 얻기 어려움 • 강연선이 매립된 PSC 교량의 동특성은 고려하지 않고 강연선의 긴장력만 예 측한 값을 사용하여 내하력을 산정하기 때문에 정확한 결과를 얻을 수 없음 • 선형센서 매립형 강연선의 실측 긴장력 값과 교량의 동특성을 기반으 로 하여 개선된 유한요소모델을 이용하여 PSC 교량의 내하력을 평가함 강연선으로부터 계측된 **상시진동기반 변형률 응답**을 활용하여 PSC 교 해결방안 량의 유한요소모델을 개선함 • 강연선으로부터 계측된 데이터를 활용하여 개선된 유한요소모델을 사 용함 • 강연선에 매립되어 있는 선형센서를 이용하기 때문에 별도의 센서를 설 치할 필요 없이 내하력을 산정하거나 평가할 수 있음 기술의 • 실제 교량의 응답을 잘 모사하는 개선된 유한요소모델을 사용하기 때문 특징 및 에 신뢰도 높은 구조해석이 가능함 우수성 • 상시진동 계측이 가능하고 계측된 변형률로부터 동특성 추정 및 개선된 유한요소모델을 구축할 수 있음

□ 기술의 효과

- 강연선의 실측 긴장력 도입과 개선된 유한요소모델을 모두 적용함으로써 보 다 신뢰도가 높은 내하력을 산정하거나 평가할 수 있음
- 강선 긴장력의 실측값으로 신뢰도 높은 프리스트레스 응력의 산정이 가능하고, 실제 교량의 응답을 잘 모사하는 개선된 유한요소모델을 사용하여 신뢰도 높은 구조해석이 가능하며, 이를 통해서 PSC 교량의 안전성을 평가하는 결과의 신뢰도를 증대시킬 수 있음

□ 기술의 완성도(TRL)

기초 연구 단계		실험 단계		시작품 단계		제품화 단계		사업화
기본원리 파악	기본개념 정립	기능 및 개념 검증	연구실환경 테 스 트	유사환경 테스트	파일럿현장 테 스 트	상용모델 개발	실제 환경 최종테스트	상용운영
			•					

□ 기술 키워드

한글키워드	PSC 교량, 내하력 평가, 유한요소모델			
영문키워드	Prestressed Concrete bridge, load bearing capacity, finite-element model			

□ 기술의 적용분야

○ 본 기술은 교량의 안전성 평가에 사용될 수 있으며, 특히 선형센서 매립형 강 연선의 실측 긴장력 값과 교량의 동특성을 기반으로 한 유한요소모델의 개선 을 통해 PSC 교량의 내하력을 평가하는 분야에 적용 가능함

[표] 적용분야

교량	안전성 평가		
PSC 교량	유한요소모델 개선, 내하력 평가		

□ 기술경쟁력

- PSC 교량 장수명화 관련 내하력 평가를 위해 강선의 긴장력과 교량의 동특성을 기반으로 하여 유한요소모델을 개선하고 이용하는 방식을 통해 교량의 노후화에 적극적으로 대응
- 강선의 긴장력 계측을 위하여 많은 연구가 수행되었고, 최근 한국건설기술연구원에서 선형센서 매립형 강연선을 개발하여 강선의 긴장력 계측이 가능해짐에 따라, 긴 장력 실측 값을 사용하여 PSC 교량의 내하력을 산정하기 때문에 신뢰도 높은 구조 해석이 가능함

□ 기술실시에 따른 기업에서의 이점

○ 교량의 안전성 평가에 대한 정확하고 신속한 진단 기술을 통해 글로벌 경쟁력을 강화할 수 있으며, 교량 안전성 진단 분야의 시장도 교량 시장의 성장과 더불어 성장할 것으로 예상되어 시장 경쟁력 확보가 가능함

[표] 국내 PSC 교량 내하력 평가 분야의 SWOT 분석

강점(Strength)	약점(Weakness)		
 교량을 차단하지 않고도 교량의 내하력을 효과적으로 산정 구조물 전반에 걸친 노후도 측정 기술의 고도화 고속주행 환경에서의 교량 내하력 측정 기술의 확보 연구와 현장적용의 동시 적용성 기술확보 	 구조물 노후도에 관련한 기존법규 및 제도의 제약 성능개선 기술 적용시에 적용되는 각종규제 교량정보를 전문적으로 분석하기 위한 교량관리자료 확보와 통합적 분석능력 미흡 유지관리기반 보수보강, 모니터링 기술 및 응용기술 부족 		
기회요인(Opportunity)	위협요인(Threat)		
 기존 노후화 구조물에 대한 성능개선 필요성 인식 국내 건설시장의 정체성을 극복하는 계기 구조물 노후도 판정에 관한 관련법규의 일관성 확보 과학기술의 급속한 발달 및 기술의 융복합화에 따른 교량 관련사업 비즈니스의 다양화 	 노후교량 유지관리 부분의 환경규제 강화에 따른 새로운 장벽 등장 중국 및 인도 등 신흥 교량기술 선진국들의 기술수준 향상 및 부상 모니터링 및 보수보강 분야 등 교량 유지기술에 대한 선진국과의 기술격차가 지속적으로 확대 		

□ 특허현황

구분	발명의 명칭	출원번호 (출원일)	등록번호 (등록일)	출원 국가
1	프리스트레스 콘크리트 교량의 내하력 평가 방법	10-2017-0011087 (2017.01.24.)	10-1943182 (2019.01.22.)	한국